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We determine a universal evolution and time scaleT to equipartition in a one-dimensional lattice ofN
masses coupled by quartic nonlinear~hard! springs. We consider chains made of two types of masses randomly
distributed, and of random masses between limiting values. The initial energy is put in a low-frequency mode
of mode numberg. T is found to be inversely proportional to the initial beat frequency between modeg and
the neighboring modes. It is also proportional to a factorN ln(N)/Nc

1/2 whereNc is a measure of the modes
quartically coupled to modeg. @S1063-651X~96!08208-6#

PACS number~s!: 05.45.1b, 63.10.1a, 63.20.Ry

Coupled oscillator chains form good test systems for in-
vestigating energy exchange among degrees of freedom. In
particular, the Fermi-Pasta-Ulam~FPU! system, consisting
of a set of equal masses coupled to nearest neighbors by
nonlinear springs, has been extensively studied. Fermi, Pasta
and Ulam@1#, in 1954, observed, for a particular initial en-
ergy distribution, that the oscillators did not relax to the
equipartition state, but displayed a persistent recurrence to
the initial condition, contrary to the expectations of statistical
mechanics. The recurrence results were later explained in
terms of beating among the system modes@2,3#. A theoreti-
cal prediction of a threshold to fast equipartition was ob-
tained by Izrailev and Chirikov@4#. Subsequently there have
been many studies of energy thresholds to give approximate
equipartition among modes@5–8#. A related question of the
time scale to achieve equipartition has been less extensively
studied@8–10#. With initial energy in a low-frequency mode,
of mode numberg, it was shown in@8#, both numerically
and theoretically, that energy transfer to high-frequency
modes is exponentially slow in a perturbation~energy! pa-
rameter at low energy. The mechanism of a transition to
more rapid energy transfer is that resonant interaction of a
few low-frequency modes, in which most of the energy re-
sides, can lead to local superperiod beat oscillations, of pe-
riod TB}N2/gE, that are stochastic. With increasing local
energy, the oscillation frequency increases until the Arnold
diffusion mechanism is no longer exponentially slow, trans-
ferring energy to the higher-frequency modes, at the charac-
teristicTB time scale. The transition was predicted to occur
at a value ofE5Ec , independent ofN, which was confirmed
numerically@8#. The transition with energy to fast equiparti-
tion was studied numerically in@6#, finding a thresholdEc8
}N, as predicted in@4#. Equipartition taking place on a
slower time scale, at lower energy (Ec,E,Ec8), studied nu-

merically in @7,8#, was in qualitative agreement with aT
}N2/gE time scale. In subsequent work we numerically in-
vestigated the scaling of the FPU dynamics, within the nor-
malized energy rangeEc,E,N @9#. Defining nef f as the
number of modes with significant energy~see below!, we
found nef f(t)/N to lie on a universal curve vs normalized
time t5t/T, T}TBN

1/2 over a range of 10,E,1000 and
16,N,1024, indicating that a factorN1/2 is a reasonable
approximation to the size-dependent filling-factor correction
to theTB time scale.

The FPU system with quartic coupling is not the only
oscillator chain relevant to physical problems. For example,
the masses need not be all the same, either in a regular@10#
or in a random manner@11#. Chains with more than one type
of mass and/or connecting spring are relevant to the study of
finite-chain molecules@12#. In particular, considerable effort
has gone into the study oflinear ~quadratic Hamiltonian!
oscillator chains with random masses@13,14#. The central
result of those studies is that the normal modes of the system
become localized, rather than extending over the entire
chain. This makes the coupling among modes more difficult
and also breaks the degeneracy of the linear frequencies.
Oscillator chains with a quadratic Hamiltonian are inte-
grable, and the initial energy in each normal mode remains
constant; for equipartition, nonlinearity is essential, which is
our interest here. For a nonlinear chain with two types of
alternating masses, where the mode frequencies split in two
branches, it was shown that for small energies the energy in
one branch remains decoupled from the second branch for
exponentially long times@10#. Again, we expect an energy
transition, above which energy may be transferred from a
low-frequency group to a high-frequency group on a time
scale that is not exponentially slow. We expect randomly
chosen masses to have a similar transition, but one that is
less distinct.

We consider chains ofN atoms with most generally ran-
domly chosen massesMi coupled to nearest neighbors by
quartic nonlinear springs. The Hamiltonian representing the
chain is
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We consider the case of strong springs (b.0) and fixed
boundariesq05qN1150. The constantb describing the
strength of the anharmonic potential can be scaled to any
positive value. We vary the energy and fixb at the value 0.1
to compare with previous work on the FPU lattice@6–9#.

Our results are obtained for a random mass distribution of
the typeMi5M0exp(dxi) with M051, d the strength of dis-
order, andx i is a number chosen either randomly at11 or
21 ~the random AB system! or randomly distributed within
@21,1# ~the random system!. The equations of motion are
integrated using a fourth-order symplectic integrator@15#.
The harmonic part of the Hamiltonian can be put in the form
of N independent normal modes via the canonical transfor-
mation

qi5(
j51

N

ui jQj /AMi j51,N, ~2!

with canonical variablesQj . The columns of the matrixui j
are the orthonormal eigenvectors of the positive definite Her-
mitian eigenvalue problem for theQ’s. The frequencieswj
of the normal modesQj are sorted to be increasing withj .
The above transformation puts the Hamiltonian~1! into the
form
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where the coefficientsG can be calculated numerically by
substituting~2! into ~1!. As an approximation for early times
when most of the energy is in modeg, we consider only the
quartic terms where k5l 5g and define
G(g,g,i , j )[wg

2wiwjCg( i , j ) so that~3! is approximated by
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For example, in the case of the FPU lattice (d50) the matrix
Cg( i , j ) has only 3N nonzero elements of the same magni-
tude, coupling only states whereu i2 j u50,2g, and the eigen-
states are extended, including all modes.

To define a perturbation parameter for the dynamics we
evaluate numerically the value of the Hamiltonian~4!, at the
initial time, for a given value of the linear actionI g ,

H̃5wgI g1 f gd~wgI g!2, ~5!

wheref gd5Cg(g,g). Notice thatf gd is a function ofd, and
also ~weakly! a function of the particular stochastic realiza-
tion of the mass positions along the chain. The perturbation
parametere is defined as the ratio of the quartic energy to the
linear energy

e5 f gdwgI g , ~6!

where, for the FPU system,e50.2wgI g /N. The nonlinear
correction to Vg5]H̃/]I g , calculated from ~5!, is
VB[2ewg , which approximates the beat frequency between
modeg and neighboring modes@8#.

We wish to generalize our previous scaling of the time to
equipartition for the FPU Hamiltonian@9# to the cases with
more general mass distributions, as described above. Further-
more, we would like to obtain a time to equipartition that is
absolute, rather than relative. We use the general formalism
of our previous work @9# that the linear energies
Ei[ 1/2 (Pi

21wi
2Qi

2), i51, . . . ,N, are calculated as a func-
tion of time. The information entropy is then given by
S52( i51

N ei lnei , whereei5Ei /( i51
N Ei are the normalized

energies. We then define the effective number of modes shar-
ing the energy bynef f(t)[expS @6,8,9#. The scaling of the
time to equipartition is obtained numerically by finding the
power of N and E that brings the curves ofnef f /N into
approximate coincidence.

Here we present a method to explicitly calculate the
‘‘equipartition time.’’ We make the approximation that the
interaction of the principal driving modeg with the other
modes gives them all equal energiesEi(t)5Ea(t), iÞg.
This is justified by the numerical observations, which indi-
cates that, after an initial transient, the result holds within a
few percent, provided the initial energyEg is well above the
critical energyEc.3 for equipartition. The change in the
linear energyEg51/2(Pg

21wg
2Qg

2) of the principal mode
g, calculated from~4!, is

dEg

dt
522wg f gdEgEa(

i , j
S Cg~ i , j !

Cg~g,g! Dhg i j , ~7!

where we have changed to action-angle coordinates via
wiQi5A2Eicos(fi), Pi5A2Eisin(fi), and defined
hg i j[sin(2fg)cos(fi)cos(fj). The exact value of the above
sum depends on knowledge of the phaseshg i j , some of
which will lock because of resonances. There is a resonance
frequencyDV[u2wg2wi2wj u associated with each phase
hg i j . As a criterion for interaction@8# we will keep a term in
the sum of~7! only if DV,VB , whereVB is the beat fre-
quency defined below Eq.~6!. We assume the phases to be
random, such that defining

Nc5
1

2 (
DV,VB

uCg~ i , j !/Cg~g,g!u2, ~8!

we can approximate the sum in~7! by Nc
1/2 For the FPU

Hamiltonian (d50), Nc can be calculated analytically,
Nc54(N22g). For the more general case with random
masses, the elements of the matrixCg( i , j ) are an integral
involving the product of four normal mode eigenvectors of
indicesi , j ,g, andg, which are generically all nonzero. As-
suming, in analogy to the FPU system, that the phaseshg i j
are approximately resonant and independent, we can also use
~8! to calculate the interaction sum of~7! in the random-mass
system. We calculated Nc(d) numerically, for
N5128, 256, and 512, and the result is shown in Fig. 1. In
the case of finited, there is a localization lengthl (d) @16#
counting the average number of nonzero elements of the
eigenvectorsui j of ~2! @for example, l (0.5)544.1 and
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FIG. 1. Nc versusd for a ran-
dom system withN5128 (L),
256 (1), and 512 (h).

FIG. 2. nef f /N versust5t/T
for FPU system with e50.5,
N5128 (L), 256 (1), 512
(h), 1024 (3); e50.35,
N5256 (n); and e50.75,
N5256 (!).

FIG. 3. nef f /N versust5t/T,
for the random system ate50.5:
N5128 andd50.0 (h), d50.5
(L), d51.0 ~1!; N5256 and
d50.5 (3), d51.0 (n);
N5512,d50.5 (!); and AB sys-
tem withN5256,d50.5 (s).
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l (2.0)512.2#. If l (d) is less thanN, there will be only
l (d) modes overlapping spatially with modeg and therefore
at most l (d)2 of Cg( i , j ) elements could be nonzero. To-
gether with the assumption that all theCg( i , j ) elements rep-
resent resonant couplings, it follows thatNc is proportional
to l (d)2 for large enoughd. In the cased50, the modes are
extended,l (0)5N, plus there is symmetry, as mentioned
above, such thatNc}N. We see the reduction ofNc with
increasing d and the tendency ofNc to become
N-independent in Fig. 1.

We substituteANc for the sum in Eq.~7! and obtain the
average equation

2dEg

Eg
52ANcwg f gdEa~ t !dt. ~9!

Integrating~9! in time withEg(t) varying fromE at t50 to
Eg(t) at t we get

ln~E/Eg!52ANcwg f gdE
0

t

Ea~ t8!dt8. ~10!

The final step in the approximation is to estimate the values
of Eg(t) and *0

t Ea(t8)dt8 at t5T, a time of ‘‘near-
equipartition.’’ Although we expectEg to have considerably
more than the average energy when our approximation
breaks down, since the quantity appears in a logarithm it is
sufficient to use the estimateEg5E/N, the value it would
obtain at equipartition. On the right-hand side, the quantity
Ea(t) appears in an integral, so that its exact form is not
required. For a diffusive process in which the amplitudes of
the modes increase witht1/2, we might expect the mode en-
ergies to increase linearly witht, Ea(t).(t/T)(E/N), such
that the time dependence does not depend onN. This is
found to be approximately true, numerically, over most of
the evolution to near-equipartition. Evaluating the integral
with the above assumption and substituting ln(N) for the left-
hand side, we obtain

T5N ln~N!/Nc
1/2wge. ~11!

In the following numerical work, as an initial condition
we generally put 90% of the energy in a low-frequency mode
g ~sayg.3) and the remaining 10% in the two neighboring
modes. We divide the characteristic timeT into 15 equal
segments and compute the value ofnef f(t) at the end of each
segment. In Fig. 2 we plotnef f /N vs t5t/T, for
N5128, 256, 512, 1024, with e50.5, and also for
N5256 with e50.35 and 0.75. We observe good conver-
gence to a single curve over most of the evolution. There is
an initial transient for which the assumptions do not hold,
and also an asymptotic behavior asnef f /N→1 for which
~10! fails. In Fig. 3 we compare the random system for
d50.5 and 1.0, withe50.5 andN5128,256, and 512, again
finding good agreement. We averaged over five realizations,
but this average differs only slightly from a single realiza-
tion. We conclude that our assumptions that went into deter-
mining the factorNc are essentially correct.

We have not considered the limitations to the universal
time scale withe andd. From our previous work@7–9# there
is a transition at smalle below which exponentially slow

FIG. 4. Sorted frequencies of a random AB atN5128 system at
d52.5 (s) and random system atd52.5 (1).

FIG. 5. nef f versust5t/T, at
e50.5: random system atd52.5
(L), AB system atd52.5 ~1!
and FPU system (h).
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Arnold diffusion manifests itself. Also, for a similar model,
there is a threshold energy to break the localization@17#. We
would expect this threshold to be a function ofd. To illus-
trate this effect, we consider both the random AB system and
the AB system. We indicate, in Fig. 4 the frequency separa-
tion of the modes for the random AB, and the random sys-
tem, for d52.5, at which value we find numerically that
equipartition is not reached. For a random AB system with
gN heavy masses and (12g)N light masses, the dispersion
relation for the first gN modes is given by
v i5(2/M̄ )1/2sin@pi/(N11)#, whereM̄5exp(2d)1gexp(d) is
the average mass, which is known as the virtual crystal ap-
proximation in solid state physics. The other (12g)N modes
have a much higher frequency of order exp(d/2). In Fig. 5
with N5128 and e50.5 we compare the values of

nef f(t)/N for the two cases of Fig. 4 to the standard FPU.
We see that the random AB case initially approximately fol-
lows the universal curve, but saturates tonef f /N>0.5, as the
higher frequency modes receive very little energy. The ran-
dom system exhibits this behavior but not as dramatically as
the frequency separation is more continuous.

In conclusion, we see that by defining an appropriate
Nc(d,e), and, provided the frequency separation is not too
large, we can calculate a time to equipartition; the evolution
to equipartition lies on a universal curve ofnef f(t)/N.
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