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Universal evolution to equipartition in oscillator chains
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We determine a universal evolution and time scaléo equipartition in a one-dimensional lattice Nf
masses coupled by quartic nonlinéaard springs. We consider chains made of two types of masses randomly
distributed, and of random masses between limiting values. The initial energy is put in a low-frequency mode
of mode numbewy. T is found to be inversely proportional to the initial beat frequency between matel
the neighboring modes. It is also proportional to a fadtdn(N)/NY? whereN, is a measure of the modes
quartically coupled to mode. [S1063-651X96)08208-9

PACS numbsgs): 05.45+b, 63.10+a, 63.20.Ry

Coupled oscillator chains form good test systems for in-merically in [7,8], was in qualitative agreement with &
vestigating energy exchange among degrees of freedom. laN?/yE time scale. In subsequent work we numerically in-
particular, the Fermi-Pasta-UlaffFPU) system, consisting vestigated the scaling of the FPU dynamics, within the nor-
of a set of equal masses coupled to nearest neighbors byalized energy rang&.<E<N [9]. Defining ny¢; as the
nonlinear springs, has been extensively studied. Fermi, Pastumber of modes with significant energgee below, we
and Ulam[1], in 1954, observed, for a particular initial en- found n.;(t)/N to lie on a universal curve vs normalized
ergy distribution, that the oscillators did not relax to thetime r=t/T, T« TgN? over a range of 18 E<1000 and
equipartition state, but displayed a persistent recurrence t06<N< 1024, indicating that a factoN? is a reasonable
the initial condition, contrary to the expectations of statisticalapproximation to the size-dependent filling-factor correction
mechanics. The recurrence results were later explained i the Ty time scale.
terms of beating among the system mofiz§]. A theoreti- The FPU system with quartic coupling is not the only
cal prediction of a threshold to fast equipartition was ob-oscillator chain relevant to physical problems. For example,
tained by Izrailev and Chirikoy4]. Subsequently there have the masses need not be all the same, either in a regil0ar
been many studies of energy thresholds to give approximater in a random manngf.1]. Chains with more than one type
equipartition among modg$—-8]. A related question of the of mass and/or connecting spring are relevant to the study of
time scale to achieve equipartition has been less extensivefinite-chain molecule§12]. In particular, considerable effort
studied[8—-10]. With initial energy in a low-frequency mode, has gone into the study dinear (quadratic Hamiltonian
of mode numbery, it was shown in[8], both numerically  oscillator chains with random massgk3,14. The central
and theoretically, that energy transfer to high-frequencyresult of those studies is that the normal modes of the system
modes is exponentially slow in a perturbatiGenergy pa- become localized, rather than extending over the entire
rameter at low energy. The mechanism of a transition tahain. This makes the coupling among modes more difficult
more rapid energy transfer is that resonant interaction of and also breaks the degeneracy of the linear frequencies.
few low-frequency modes, in which most of the energy re-Oscillator chains with a quadratic Hamiltonian are inte-
sides, can lead to local superperiod beat oscillations, of peyrable, and the initial energy in each normal mode remains
riod Tg=N?/yE, that are stochastic. With increasing local constant; for equipartition, nonlinearity is essential, which is
energy, the oscillation frequency increases until the Amolchyr interest here. For a nonlinear chain with two types of
diffusion mechanism is no longer exponentially slow, trans-gjternating masses, where the mode frequencies split in two
ferring energy to the higher-frequency modes, at the charagyranches, it was shown that for small energies the energy in
teristic Tg time scale. The transition was predicted to occurone branch remains decoupled from the second branch for
atavalue oE=E_, independent o, which was confirmed  exponentially long time$10]. Again, we expect an energy
numerically[8]. The transition with energy to fast equiparti- transition, above which energy may be transferred from a
tion was studied numerically if6], finding a thresholdE;  low-frequency group to a high-frequency group on a time
=N, as predicted in4]. Equipartition taking place on a scale that is not exponentially slow. We expect randomly
slower time scale, at lower energi <E<E/), studied nu- chosen masses to have a similar transition, but one that is

less distinct.
We consider chains dfl atoms with most generally ran-
*Electronic address: deluca@ifgsc.sc.usp.br domly chosen massdd; coupled to nearest neighbors by
TElectronic address:ajl@eecs.berkeley.edu guartic nonlinear springs. The Hamiltonian representing the
*Electronic address: ruffo@ingfil.ing.unifi.it chain is
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2 1 where, for the FPU systeng=0.2w,l,/N. The nonlinear
— Pi 2 B 4 . P vy i
H=2 om. 3G+ = )"+ 7 (Aia—a)" (1) correction to Q,=dH/dl,, calculated from (5), is
=0 ! Qg=2ew,, which approximates the beat frequency between
modey and neighboring modgs].

We wish to generalize our previous scaling of the time to
equipartition for the FPU Hamiltonial®] to the cases with
thore general mass distributions, as described above. Further-
more, we would like to obtain a time to equipartition that is

bsolute, rather than relative. We use the general formalism

f our previous work [9] that the linear energies
Ei=1/2 (P?+w?Q?),i=1,... N, are calculated as a func-
tion of time. The information entropy is then given by
S=-3N .elne, whereg,=E; /=N ,E; are the normalized
energies. We then define the effective number of modes shar-
ing the energy byn.¢:(t)=expS [6,8,9. The scaling of the
time to equipartition is obtained numerically by finding the
power of N and E that brings the curves ofi.¢;/N into

We consider the case of strong spring$>0) and fixed
boundariesqyo=qyn+1=0. The constants describing the
strength of the anharmonic potential can be scaled to an
positive value. We vary the energy and fixat the value 0.1

to compare with previous work on the FPU latti@-9).

Our results are obtained for a random mass distribution o
the typeM; =M yexp(Sy;) with My=1, § the strength of dis-
order, andy; is a number chosen either randomly-af. or
—1 (the random AB systejror randomly distributed within
[—1,1] (the random systemThe equations of motion are
integrated using a fourth-order symplectic integrdtbb].
The harmonic part of the Hamiltonian can be put in the form
of N independent normal modes via the canonical transfor

mation . .
approximate coincidence.
N Here we present a method to explicitly calculate the
qi=>, uiij/‘/Mi ji=1N, (2)  “equipartition time.” We make the approximation that the
i=1 interaction of the principal driving modeg with the other
_ _ _ _ modes gives them all equal energiEqt) =E_(t), i#y.
with canonical variable®; . The columns of the matrik;;  This is justified by the numerical observations, which indi-

are the orthonormal eigenvectors of the positive definite Hereates that, after an initial transient, the result holds within a
mitian eigenvalue problem for th@'s. The frequenciesv;  few percent, provided the initial ener@y, is well above the

of the normal mode®); are sorted to be increasing wifh  critical energyE.=3 for equipartition. The change in the
The above transformation puts the Hamiltonidn into the  [inear energyE = 1/2(P§+W§Q§) of the principal mode

form v, calculated from(4), is
1, w dE C,(i.})
_ L2, A2 e 0.0 Sy adaSLLEES DU
H=2 (ZP.+ 7 Q|+ 2 601k )IQQQQ,, gt =2y E (T 7))%.,, @

3
where we have changed to action-angle coordinates via
where the coefficient& can be calculated numerically by w,Q,=\2E;cos@), P;=2E;sin(¢), and defined
substituting(2) into (1). As an approximation for early times 7,i; =Sin(2¢,)cos)cos(;). The exact value of the above
when most of the energy is in mode we consider only the  sum depends on knowledge of the phasgg, some of
quartic  terms  where k=/=y and  define which will lock because of resonances. There is a resonance
G(7,7,1,J)=wWiw;w;C,(i,j) so that(3) is approximated by ~frequencyAQ=|2w,—w,—w;| associated with each phase
7,ij - As a criterion for interactiofi8] we will keep a term in
5 o _— o the sum of(7) only if AQ<Qpg, where)g is the beat fre-
(PF+wiQj )+W7Q72 C,(LDwiw;QiQ; - quency defined below Ed6). We assume the phases to be
! (4) random, such that defining

N| =

~ N
H=>
i=1

For example, in the case of the FPU lattige<0) the matrix :E - 2

C,(i,j) has only 3N nonzero elements of the same magni- Ne=3 AQZ&)B ICEDIC (I, ®

tude, coupling only states whefie- j| =0,2y, and the eigen-

states are extended, including all modes. we can approximate the sum (@) by Ni’z For the FPU
To define a perturbation parameter for the dynamics wedamiltonian (=0), N, can be calculated analytically,

evaluate numerically the value of the Hamiltonigh, at the  N.=4(N—2v). For the more general case with random

initial time, for a given value of the linear actidn), masses, the elements of the mat@ix(i,j) are an integral
_ involving the product of four normal mode eigenvectors of
H=w, I, +f 5w, 7)2, (5)  indicesi,j,y, andy, which are generically all nonzero. As-

suming, in analogy to the FPU system, that the phaggs
wheref s=C_(y,7). Notice thatf 5 is a function of, and  are approximately resonant and independent, we can also use
also (weakly) a function of the particular stochastic realiza- (8) to calculate the interaction sum @f) in the random-mass
tion of the mass positions along the chain. The perturbatiosystem. We  calculated N (6) numerically, for
parametek is defined as the ratio of the quartic energy to theN=128, 256, and 512, and the result is shown in Fig. 1. In
linear energy the case of finites, there is a localization length(5) [16]

counting the average number of nonzero elements of the

e=f wl,, (6)  eigenvectorsu;; of (2) [for example, 1(0.5)=44.1 and
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[(2.0)=12.2]. If 1(6) is less thanN, there will be only

I(5) modes overlapping spatially with modeand therefore
at mostl(8)? of C,(i,j) elements could be nonzero. To-
gether with the assumption that all tdg(i,j) elements rep-

resent resonant couplings, it follows tHdt is proportional

to 1(8)? for large enoughs. In the cases=0, the modes are
extended,|(0)=N, plus there is symmetry, as mentioned

above, such thaN.<N. We see the reduction dfl. with

increasing 6 and the
N-independent in Fig. 1.

tendency ofN,

We substituteyN, for the sum in Eq(7) and obtain the

average equation

—dE,
£ =2New, fsE (D) dt.

to become

9

Integrating(9) in time with E (t) varying fromE att=0 to

E,(t) att we get

54
The final step in the approximation is to estimate the values
of E(t) and [{E,(t')dt’ at t=T, a time of “near-
equipartition.” Although we expedE,, to have considerably
more than the average energy when our approximation
breaks down, since the quantity appears in a logarithm it is
sufficient to use the estimate,=E/N, the value it would
obtain at equipartition. On the right-hand side, the quantity
E.(t) appears in an integral, so that its exact form is not
required. For a diffusive process in which the amplitudes of
the modes increase witlt?, we might expect the mode en-
ergies to increase linearly with E,(t)=(t/T)(E/N), such
that the time dependence does not dependNorThis is
found to be approximately true, numerically, over most of
the evolution to near-equipartition. Evaluating the integral
with the above assumption and substitutind\)nfor the left-
hand side, we obtain
T=NIn(N)/NYaw e. (11)

In the following numerical work, as an initial condition
we generally put 90% of the energy in a low-frequency mode
v (sayy=3) and the remaining 10% in the two neighboring
modes. We divide the characteristic tinfeinto 15 equal
segments and compute the valuengf;(t) at the end of each
segment. In Fig. 2 we plotng; /N vs 7=t/T, for
N=128, 256, 512, 1024, withe=0.5, and also for
N=256 with e=0.35 and 0.75. We observe good conver-
gence to a single curve over most of the evolution. There is
an initial transient for which the assumptions do not hold,
and also an asymptotic behavior ag;;/N—1 for which
(10) fails. In Fig. 3 we compare the random system for
6=0.5 and 1.0, withe=0.5 andN= 128,256, and 512, again
finding good agreement. We averaged over five realizations,
but this average differs only slightly from a single realiza-
tion. We conclude that our assumptions that went into deter-
mining the factom, are essentially correct.

We have not considered the limitations to the universal

In(E/E,)= 2\/N_Cwyfy5ftEa(t’)dt’. (10) time scale withe and 5. From our previous work7—9] there
0 is a transition at smalk below which exponentially slow
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09 r = 4
0
0.8 - - —
oo <
0.7 <& —
F.oc
0.6 <& i
O <><> FIG. 5. ng¢s versusT=t/T, at
nesr/N 0.5 + + + + - €=0.5: random system af=2.5
0.4 _I%> + B (¢), AB system at5=2.5 (+)
' EZI<>> + and FPU system({).
03 e T -
3,
0.2 -QIf -
0.1 a 4
0 | 1 ! |
0 2 4 6 10 12



54 UNIVERSAL EVOLUTION TO EQUIPARTITION IN ... 2333

Arnold diffusion manifests itself. Also, for a similar model, n.¢:(7)/N for the two cases of Fig. 4 to the standard FPU.
there is a threshold energy to break the localizafib. We = We see that the random AB case initially approximately fol-
would expect this threshold to be a function &fTo illus-  lows the universal curve, but saturatesitg;/N=0.5, as the
trate this effect, we consider both the random AB system anéligher frequency modes receive very little energy. The ran-
the AB system. We indicate, in Fig. 4 the frequency separadom system exhibits this behavior but not as dramatically as
tion of the modes for the random AB, and the random systhe frequency separation is more continuous. .
tem, for §=2.5, at which value we find numerically that  In conclusion, we see that by defining an appropriate
equipartition is not reached. For a random AB system withNc(é,€), and, provided the frequency separation is not too
gN heavy masses and €Ig)N light masses, the dispersion large, we can ca_lculate a tlme to equipartition; the evolution
relation for the first gN modes is given by to equipartition lies on a universal curve f:+(7)/N.

w;=(2/M)Y?sin 7i/(N+1)], whereM = exp(— 8)+gexp(®) is We want to thank L. loriatti, D. Shepelyansky, and P.
the average mass, which is known as the virtual crystal apPoggi for interesting discussions and the support from CNPQ
proximation in solid state physics. The other{@)N modes  fellowship No. 301243/94®!V), ONR 00014-95-1-0361,
have a much higher frequency of order ed@]. In Fig. 5 NSF Phys-950562, and the Laboratorio Forum
with N=128 and e=0.5 we compare the values of INFM, Italy.
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